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Abstract

The involutory birack counting invariant is an integer-valued invariant of unoriented tangles defined
by counting homomorphisms from the fundamental involutory birack of the tangle to a finite involutory
birack over a set of framings modulo the birack rank of the labeling birack. In this first of an anticipated
series of several papers, we enhance the involutory birack counting invariant with quantum weights, which
may be understood as tangle functors of involutory birack-labeled unoriented tangles.
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1 Introduction

A birack X is an algebraic structure with axioms determined by the framed Reidemeister moves such that
labelings of arcs in a tangle diagram with elements of X before and after a move are in bijective correspon-
dence. In particular, the number of X-labelings of a tangle diagram by a given involutory birack X is an
invariant of unoriented framed links under framed isotopy moves. Biracks were introduced in [7]; special
cases of biracks including racks, quandles and biquandles have been studied and used to define link invariants
in various works including [6, 9, 12, 3, 11, 5] and more.

A finite birack has an associated integer N called the birack rank or birack characteristic with the property
that framed unoriented links with equivalent framings modulo N have equal numbers of labelings. Summing
over a complete period of framings, one obtains an integer-valued invariant of unframed tangles called the
integral birack counting invariant, denoted ΦZ

X; see [13] for more.
An enhancement of ΦZ

X is obtained by evaluating an invariant σ of X-labeled diagrams on each X-labeling
of a tangle diagram T and collecting these values over a complete set of X-labelings to obtain a multiset
of σ-values sometimes called “signatures”. This multiset is then a generally stronger invariant of unframed
links whose cardinality is the birack counting invariant ΦZ

X.
In this paper we develop an enhancement of ΦZ

X in the special case when X is an involutory birack,
the type of birack appropriate for defining invariants of unoriented tangles, using σ values we call quan-
tum weights. Quantum weights are birack-labeled tangle functors which may be understood as customized
quantum invariants for X-labeled tangle diagrams. This will be the first is a series of papers in which we
consider progressively more complex cases, starting with the unoriented case in this paper and in the sequels
considering the oriented and virtual cases. The paper is organized as follows. In Section 2 we review the
basics of involutory biracks and the birack counting invariant. In Section 3 we introduce quantum weights
and the quantum-enhanced birack counting invariant; we give examples to demonstrate how the invariant is
computed and show that the enhanced invariant is stronger than the unenhanced invariant. In Section 4 we
consider quantum enahancements of involutory birack counting invariants for closed braids. We conclude in
Section 5 with some open questions and directions for future work.
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2 Involutory Biracks and the Counting Invariant

Recall that a framed unoriented tangle is an equivalence class of disjoint unions of simple closed curves and
arcs in A = R2 × [0, 1] with endpoints in fixed positions in ∂A; two such disjoint unions are equivalent if
they can be connected by an ambient isotopy of A fixing ∂A and preserving the linking number of each
component with a choice of framing curve for each component. The linking number of a component with its
framing curve is the framing number of the component; the framing number is equal to the writhe or sum
of crossing signs

at self-crossings when the framing curve is the blackboard framing curve obtained by pushing off a parallel
copy of each component in a diagram of T .

Equivalently, framed unoriented tangles can be defined combinatorially as an equivalence class of un-
oriented tangle diagrams under the equivalence relation generated by the framed unoriented Reidemeister
moves

In particular, the usual unframed Reidemeister I move changes the backboard framing of a component by
±1, while the framed version depicted above preserves the framing. An unframed tangle of c components
thus determines a Zc–lattice of framed tangles; a choice of ordering on the components allows us to specify
a framing with a framing vector ~w ∈ Zc.

Next, we have a definition from [2]:

Definition 1 An involutory birack is a set X with an invertible map B : X×X→ X×X such that

(i) (τB)2 = I

(ii) The components (τB∆)1,2 : X→ X of the map τB∆ : X→ X×X are bijections, and

(iii) B satisfies the set-theoretic Yang-Baxter equation

(B × I)(I ×B)(B × I) = (I ×B)(B × I)(I ×B)

where τ : X ×X → X ×X, ∆ : X → X ×X and I : X → X are defined by τ(x, y) = (y, x), ∆(x) = (x, x)
and I(x) = x respectively. The map S : X×X→ X×X defined by S = τBτ = B−1 is called the sideways
map. We will find it useful to abbreviate B1(x, y) = yx, B2(x, y) = xy, (S∆)−12 = α and (S∆)1α = π.

Let X be an involutory birack. A birack labeling or X–labeling of an unoriented framed tangle diagram
T is an assignment of elements of X to the semiarcs of T , i.e., the portions of T between crossing points,
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such that at every crossing we have the pictured relationship between semiarc labelings:

.

The involutory birack axioms are then consequences of the framed Reidemeister moves; more precisely,
they are the conditions required to guarantee that for every birack labeling of a tangle diagram before a
framed unoriented Reidemeister move, there is exactly one corresponding labeling of the diagram T ′ after the
Reidemeister move. In particular, given a finite involutory birack X, the number of X–labelings of a framed
tangle T is an invariant of unoriented framed isotopy called the basic birack counting invariant, denoted
ΦBX(L).

Standard examples of involutory biracks include

• Constant Action Involutory Biracks. Let X be any set and σ, τ : X → X two involutions such that
στ = τσ. Then

B(x, y) = (σ(y), τ(x))

defines an involutory birack structure on X.

• Involutory (t, s, r)-Biracks. Let X be a module over the ring Λ̃ = Z[t, s, r]/I where I is the ideal
generated by s2 − s(1− tr), 1− t2, 1− r2, (t+ r)s, and (1− r)s. Then X is an involutory birack with
map

B(x, y) = (ty + sx, rx).

• The Fundamental Involutory Birack of an Unoriented Framed Tangle. Let T be an unoriented framed
tangle and let G = {g1, . . . , gn} be a set of generators corresponding bijectively with the semiarcs in T .
The set W of involutory birack words in T is defined recursively by the rules (1) x ∈ G⇒ x ∈W and (2)
x, y ∈W ⇒ B1(x, y) ∈W and B2(x, y) ∈W . Then the Fundamental Involutory Birack of T , IB(T ), is
the set of equivalence classes in W under the equivalence relation determined by the involutory birack
axioms and the crossing relations in T . Note that birack labelings of a tangle T by a birack X are
precsiely birack homomorphisms f : IB(T ) → X, i.e. maps satisfying (f × f)BIB(T ) = BX(f × f)
where BX and BIB(T ) are the birack maps in X and IB(T ) respectively.

Given a finite set X = {x1, . . . , xn} we can define an involutory birack structure on X by giving a
matrix MX = [U |L] encoding the operation tables of the components of B considered as binary operations
B(x, y) = (yx, xy). That is, MX is a block matrix with two blocks U and L such that the entries in row
i, column j of UT and L respectively are k and l where B(xi, xj) = (xk, xl).

1 Such a matrix defines an
involutory birack if and only if the map B : X × X → X × X defined by the matrix satisfies the birack
axioms.

Example 1 The smallest involutory birack which is neither a rack nor a quandle is given by the birack
matrix [

1 1 2 2
2 2 1 1

]
.

1We use the transpose of U so that in an X-labeling of a tangle diagram, the row label operand and the output label lie on
the same strand.
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For a birack X, the kink map π : X→ X defined by π = (S∆)1(S∆)−12 is a bijection representing going
through a positive kink as pictured.

The exponent of π considered as an element of the symmetric group SX, i.e. the smallest positive integer N
such that πN = I, is called the birack rank or birack characteristic of X. In the unoriented case, the framed
type I move then requires that π = π−1 and we obtain

Theorem 1 An involutory birack has birack rank N = 1 or N = 2.

An involutory birack of rank N = 1 is an involutory biquandle or bikei (双圭).
By construction, if X is an involutory birack of rank N , then X-labelings of a framed tangle diagram

before and after the N -phone cord move are in bijective correspondence. When N = 1, the N -phone cord
move is the unframed Reidemeister type I move; when N = 2, the move is as pictured below.

Given an unoriented framed tangle T of c components and a finite involutory birack X, the Zc–lattice of
unoriented framings of T determines a Zc–lattice of basic counting invariant values ΦBX(T, ~w).

If N = 1, then these basic counting invariants are all equal; if N = 2, then any two framings of T with
framing vectors congruent mod 2 have the same basic counting invariants, so the Zc–lattice is tiled with a
2× 2 tile of basic counting invariant values. In either case, we can sum the basic counting invariants over an
N ×N tile of framings to obtain an invariant of unframed unoriented links T called the integral involutory
birack counting invariant,

ΦZ
X(T ) =

∑
~w∈(ZN )C

ΦBX(T, ~w)

where (T, ~w) is a diagram of T with framing vector ~w.
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Example 2 The matrix

MX =

 2 2 2 1 1 1
1 1 1 2 2 2
3 3 3 3 3 3


defines an involutory birack of rank N = 2. To compute the counting invariant ΦZ

X(T ) of a tangle T , we
need to find the rack labelings over a complete set of framing vectors mod 2. For example, the Hopf link
L2a1 has two components and thus the space of framings is (Zn)22 = {(0, 0), (1, 0), (0, 1), (1, 1)}. The Hopf
link with framing vector (0, 1), for instance, has X-labelings

so this framing contributes 3 labelings to the invariant. The other framing vectors contribute 1, 3, and 5
labelings respectively, so we have φZX(L2a1) = 1 + 3 + 3 + 5 = 12.

3 Quantum Enhancements

Let T be an unoriented link of c components and X a finite involutory birack of rank N . To each X-labeling
f : IB(T ) → X of T we would like to define a signature σ(f) which is invariant under X-labeled framed
Reidemeister moves. We will do this by defining an X-labeled tangle functor or X-labeled quantum invariant
which we call a quantum weight Q. More precisely, any X-labeled unoriented tangle diagram T can, after
applying planar isotopy if necessary, be divided into pieces of the pictured forms:

Now let us fix a field k and a k-vector space V . The idea is to assign linear maps to the basic tangles so
that the overall tangle determines a linear map when we interpret horizontal stacking as tensor product and
vertical stacking as composition of linear transformations.

A quantum weight will then be an assignment of linear transformations to these basic X-labeled tangles such
that equivalent X-labeled framed tangles define the same linear transformation. This breaks down into the
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requirement that the assignment respects the X-labeled framed tangle moves (see [14, 8]):

,

together with the requirement that the appropriate X-labeled N -phone cord move acts as multiplication by
a scalar δ.

or

Fixing a basis for V , we can regard sideways stacking as Krönecker product of matrices and vertical
stacking as matrix product. The moves V I and V II are automatically satisfied if we choose the identity
transformation for the I-tangle by the mixed-product property of Kronecker product. Thus we have:

Definition 2 Let X be an involutory birack with finite rank N , V a vector space over a field k and I : V → V
the identity transformation on V . A quantum weight is an assignment of linear transformations

Xx,y : V ⊗ V → V ⊗ V, Nx : V ⊗ V → k, Ux : k → V ⊗ V

indexed by x, y ∈ X satisfying the following conditions for all x, y, z ∈ X:

(I) (Nα(x) ⊗ I)(I ⊗Xα(x),x)(Uα(x) ⊗ I) = (I ⊗Nαπ(x))(Xx,απ(x) ⊗ I)(I ⊗ Uαπ(x))

(II) Xx,y is invertible,

(III) (Xyx,zxy ⊗ I)(I ⊗Xxy,z)(Xx,y ⊗ I) = (I ⊗Xxzy ,yz )(Xx,zy ⊗ I)(I ⊗Xy,z)

(IV) (Nyx ⊗ I)(I ⊗Xx,y) = (I ⊗Ny)(X−1xy,y ⊗ I)

(IV′) (Nx ⊗ I)(I ⊗X−1x,yx) = (I ⊗Nxy
)(Xx,y ⊗ I)

(V) (I ⊗Nx)(Ux ⊗ I) = I = (Nx ⊗ I)(I ⊗ Ux)
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(VI)

{
(Nα(x) ⊗ I)(I ⊗Xα(x),x)(Uα(x) ⊗ I) = δI N = 1
(Nαπ(x) ⊗ I)(I ⊗Xαπ(x),π(x))(Uαπ(x) ⊗ I)(Nα(x) ⊗ I)(I ⊗Xα(x),x)(Uα(x) ⊗ I) = δI N = 2

for an invertible scalar δ.

Given an involutory birack X = {x1, . . . , xm} and a k-vector space V of dimension d with a fixed basis,
we can specify a quantum weight with a quadruple (M,N,U, δ) where M is an m × m block matrix of
d2 × d2 blocks, with the (i, j) block of M the matrix with respect to a fixed choice of basis of the map
Xxi,xj

: V ⊗ V → V ⊗ V associated to the crossing with labels xi and xj , N is a block matrix of row
vectors specifying the maps Nx : V ⊗V → k, and U is a block matrix of column vectors specifying the maps
Uk : k → V ⊗ V .

M =


X11 X12 . . . X1m

X21 X22 . . . X2m

...
...

. . .
...

Xm1 Xm2 . . . Xmm

 , N =


N1

N2

...
Nm

 , and U =
[
U1 U2 . . . Um

]
.

Example 3 Let B = {1}, the singleton birack. Then the quadruple

(M,N,U, δ) =



A 0 0 0
0 0 A−1 0
0 A−1 A−A−3 0
0 0 0 A

 , [
0 A −A−1 0

]
,


0
−A
A−1

0

 , −A3


defines a well-known quantum weight, the Kauffman bracket/Jones polynomial. Indeed, for any involutory
birack X, we can set Xx,y, Nx and Ux equal to these M,N and U matrices respectively for all x, y ∈ X and
δ = −A3 to obtain a quantum weight.

Example 4 Let X be the constant action birack on {1, 2} with σ = τ = (12); X has birack matrix[
2 2 2 2
1 1 1 1

]
.

It is easy to verify that X is involutory (see [2]), and it is straightfoward (if somewhat tedious) to verify that
the following quadruple defines a quantum weight of X where V = Q2:



0 0 0 b−1 0 0 0 b
0 a 0 0 0 a−1 0 0
0 0 a 0 0 0 a−1 0
b−1 0 0 0 b 0 0 0
0 0 0 b 0 0 0 b−1

0 a−1 0 0 0 a 0 0
0 0 a−1 0 0 0 a 0
b 0 0 0 b−1 0 0 0


,

[
0 n −n 0
0 −n n 0

]
,


0 0
−n−1 n−1

n−1 −n−1
0 0

 ,−a−1

.

A quantum weight Q translates an X-labeling f of a tangle diagram T into a linear transformation
Q(f) : V ⊗n → V ⊗m for some n,m ∈ Z. In the special case when T is a closed tangle, i.e. a knot or link,
Q(f) is a scalar. Moreover, by construction Q(f) is invariant under X-labeled framed isotopy moves, and
N -phone cord moves change Q(f) by a power of δ. To obtain an unframed invariant, we correct for the
effects of N -phone cord moves analogously to the normalization used to obtain the Jones polynomial from
the Kauffman bracket: if the blackboard framing of a component ck of T is wk, write wk = qkN + rk where
0 ≤ rk < N , and define the normalized quantum weight Q(f) of an X-labeled tangle diagram T by

Q(f) = δ−~wQ(f) where δ−~w =

c∏
k=1

δ−qk .
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Equivalently, the normalized quantum weight of a diagram is the quantum weight of the diagram equivalent
to T by framed Reidemeister and N -phone cords moves whose framing is equal to its reduced value mod N .
Then by construction we have

Theorem 2 Let X be an involutory birack of rank N and Q a quantum weight. If T and T ′ are unoriented
blackboard framed X-labeled tangle diagrams which are related by framed isotopy and N -phone cord moves,
then Q(L) = Q(L′).

As a corollary, we can use quantum weightings to enhance the integral birack counting invariant. More
precisely, we have

Definition 3 Let X be an involutory birack, V a k-vector space, Q a quantum weight and T an unoriented
tangle of c components. The quantum enhanced multiset invariant of T is the multiset

ΦQ,MX (L) = {Q(f) | f ∈ Hom(IB(T, ~w),X), ~w ∈ ZcN}

and if T is a link, the quantum enhanced polynomial invariant of T with respect to X and Q is

ΦQX(T ) =
∑
~w∈Zc

N

 ∑
f∈Hom(IB(T,~w),X)

uQ(f)

 .

In particular, we have

Theorem 3 If X is an involutory birack, Q is a quantum weight and T and T ′ are ambient isotopic unori-
ented tangles, then ΦQ,MX (T ) = ΦQ,MX (T ′) and if T is a link, then ΦQX(T ) = ΦQX(T ′).

Example 5 Let X be the birack with a single element. Then ΦQ,MX is a tangle functor or quantum invariant,

and indeed all such invariants can be regarded as special cases of ΦQ,MX with X = {1}. Alternatively, a

quantum weight in which the maps Xx,y, Nx, Ux do not depend on the birack labeling satisfies ΦQ,MX =
ΦZ

X ×Q where Q is a tangle functor.

Remark 1 Let X be a finite involutory birack of rank N = 1 with B2(x, y) = x, also known as a kei (圭) or
involutory quandle, and let V = k be a one-dimensional vector space. Then a quantum weight assigns scalars
Xx,y, Nx, and Ux to each pair of elements or element of X respectively, satisfying the above conditions. If

Nx = Ux = δ = 1 for all x ∈ X, the function φ : X ×X → k is then a quandle 2-cocycle and ΦQX(L) is the
CJKLS quandle 2-cocycle invariant associated to φ. See [3] for more.

Remark 2 The anonymous referee of an earlier version of this paper suggested that an alternative way to
view quantum enhancements would regard them as quantum invariants which admit gradings by biracks.
Future work will no doubt explore this perspective.

Example 6 Let X be the constant action birack from example 4. Note that X-labelings of a tangle simply
switch the label from 1 to 2 or 2 to 1 at every overcrossing and undercrossing point, and moreover ΦZ

X(T ) = 2c

where c is the number of components of T . Thus, ΦZ
X does not distinguish any pair of tangles with the same

number of components. However, consider the following two-component tangles, each with ΦZ
X(T ) = 4:
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The X-labeling of T3 below, for instance, contributes

σ


 = (I ⊗N2 ⊗ I)(X−11,2 ⊗X

−1
2,1 )(I ⊗ U2 ⊗ I)

=

([
1 0
0 1

]
⊗
[

0 −n n 0
]
⊗
[

1 0
0 1

])



0 0 0 b−1

0 a 0 0
0 0 a 0
b−1 0 0 0

⊗


0 0 0 b−1

0 a 0 0
0 0 a 0
b−1 0 0 0



[ 1 0

0 1

]
⊗


0
n−1

−n−1
0

⊗ [ 1 0
0 1

]

=


0 0 0 0
0 a−2 −b2 0
0 −b2 a−2 0
0 0 0 0


to ΦQ,MX (T2) since ~w = (0, 0) so Q(f) = Q(f); repeating for the other X-labelings and for the other tangles
yields the invariant values listed below.

ΦQ,MX (T1) =

4×


1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1


 ,

ΦQ,MX (T2) =

2×


0 0 0 0
0 −1 1 0
0 1 −1 0
0 0 0 0

 , 2×


0 0 0 0
0 1 −1 0
0 −1 1 0
0 0 0 0


 ,

ΦQ,MX (T2) =

2×


0 0 0 0
0 a−2 −b2 0
0 −b2 a−2 0
0 0 0 0

 , 2×


0 0 0 0
0 −a2 b−2 0
0 b−2 −a2 0
0 0 0 0


 .

Note that the invariant ΦQX determines the integral birack counting invariant since |ΦM,Q
X | = ΦZ

X and, if T

is a link, evaluating ΦQX at u = 1 yields ΦZ
X. As example 4 shows, ΦQX is a stronger invariant in general than

ΦZ
X and thus a proper enhancement.

4 Quantum Enhancements of X-labeled Braids

Every framed oriented knot or link can be expressed as a closed braid β̂ for a braid β = σk1 . . . σkn . Restricting
our attention to closed braids yields provides advantages for searching for quantum weights: we need only seek
matrices σ±1a,b satisfying the Reidemeister III move, and we can consider matrices with arbitrary dimension
instead of being limited to perfect square dimensions as in the tangle case. On the other hand, any pair of
conjugate closed braids determine the same knot, so the weight matrix determined by an X-labeled closed
braid is not a valid signature, only its conjugacy class. We will deal with this by taking the trace of the
weight matrix as the signature, which is unchanged by conjugacy as well as faster computationally than
other conjugacy-class invariants such as the determinant.

Definition 4 Let Bn be the n-strand braid group and let X be an involutory birack. An n-braid weight
for X is an assignment of an invertible matrix σx,yj with entries in a ring R for each x, y ∈ X and each
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j = 1, . . . , n− 1 such that the X-labeled braid relations

σx,yj σ
xy,z
j+1 σ

yx,zxy

j = σy,zj+1σ
x,zy

j σxzy ,yz
j+1

and
σx,yj σu,vk = σu,vk σx,yj |j − k| < 2

are satisfied.

Given a braid weight for an involutory birack X, we can define an enhancement of the involutory birack
counting invariant for closed n-braids by replacing each braid generator in an X-labeling of β̂ with the
corresponding matrix and taking the trace as a signature. Note that an X-labeling of a closed braid must
have the same list of X-labels along the top and bottom of the braid in addition to satisfying the crossing
condition at each crossing, and note further that fixing the braid index fixes the framing, so in this section
we are only enhancing ΦBX .

Definition 5 Let β ∈ Bn, X be an involutory birack, and W = {σx,yj | x, y ∈ X, 1 ≤ j ≤ n− 1} be a braid
weight for X. Then the braid weight enhancement of the basic X-counting invariant is the multiset of the
traces of the matrices βf obtained by replacing each braid group generator σj with the appropriate matrix
Xx,y
j over the set of all X-labelings f of β, i.e.

ΦM,W
X (β) = {tr (βW ) | f ∈ Hom(IB(β),X)}

with polynomial version

ΦWX (β) =
∑

f∈Hom(IB(β),X)

utr (βW ).

Example 7 Let X be the involutory birack with matrix

MX =

[
2 2 2 2
1 1 1 1

]
.

Our computer search identified 3-braid weights for X including

j = 1 j = 2[
0 1
x 0

] [
0 1
y 0

]
[

0 1
z 0

] [
0 1
w 0

]
[

0 1
w 0

] [
0 1
z 0

]
[

0 1
y 0

] [
0 1
x 0

] .

Then for instance the closure of the braid β = σ1σ1σ1σ2 ∈ B3 is the trefoil knot with framing number 2; it has
ΦM,W

X (β) = {2y2, 2z2} while the closure of the braid β′ = σ1σ
−1
1 σ1σ2 is an unknot with ΦM,W

X (β) = {2y, 2z}.

5 Questions

We conclude with a few questions and directions for future research.
Our computations suggest that the quantum enhancement in example 4 is trivial on classical knots, and

indeed many of the two-dimensional quantum enhancements we were able to find in our (far from exhaustive)
computer search with respect to small-cardinality involutory biracks X appear to yield trivial invariants on
closed classical knots. Nevertheless, the enhancement in example 4 is nontrivial on at least some tangles with
nonempty boundary, and there are many known examples of nontrivial one-dimensional quantum weights
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(namely, CJKLS quandle 2-cocycle invariants) and nontrivial two-dimensional quantum weights on small
cardinality biracks (namely, tangle functor invariants).

Expanding on example 5, let us say a quantum weight is homogeneous if Xx,y = Xx′,y′ , Nx = Nx′ and
Ux = Ux′ for all x, y, x′, y′ ∈ X, and that a quantum weight is heterogeneous if at least one Xx,y 6= Xx′y′ ,
Nx 6= Nx′ or Ux 6= Ux′ . Example 4 demonstrates the existence of heterogeneous quantum enhancements. For
a given involutory birack X, what is the minimal dimension of a vector space V required for the existence
of a heterogeneous quantum weight?

Continuing in the same vein, say a quantum weight is strongly heterogeneous if at least one of the Xi,j

matrices is not a classical R-matrix, i.e. if Xi,j does not satisfy the unlabeled Yang-Baxter equation

(I ×Xi,j)(Xi,j × I)(I ×Xi,j) = (Xi,j × I)(I ×Xi,j)(Xi,j × I).

If X is an involutory quandle, then the matrices Xii on the diagonal of X must be R-matrices, but even
in this case the off-diagonal matrices need not satisfy the unlabeled Yang-Baxter equation a priori, and
the quantum weights associated to a non-quandle birack might all be fail to be classical R-matrices. Such
quantum weights are expected to define the most interesting and non-trivial quantum enhancements.

We note that in general, finding quantum weights is a difficult problem. Even for the smallest non-trivial
biracks (those with two elements) and the smallest non-scalar quantum weights (dim(V ) = 2), the entries
of the matrices represent up to 80 independent variables with the axioms yielding a system of hundreds of
non-linear equations. Computer searches have yielded some results, but better methods of finding quantum
weights would be of great interest. Our python code is available at www.esotericka.org.

Finally, we note that in this paper we have considered only the simplest possible case, that of unoriented
classical tangles. In future papers we will explore the oriented, virtual and twisted virtual case, each of which
involves more complicated axioms and, we expect, richer structure.
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