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Abstract

We introduce a new class of quantum enhancements we call biquandle brackets, which are customized
skein invariants for biquandle colored links. Quantum enhancements of biquandle counting invariants
form a class of knot and link invariants that includes biquandle cocycle invariants and skein invariants such
as the HOMFLY-PT polynomial as special cases, providing an explicit unification of these apparently
unrelated types of invariants. We provide examples demonstrating that the new invariants are not
determined by the biquandle counting invariant, the knot quandle, the knot group or the traditional
skein invariants.
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1 Introduction

Biquandles, algebraic structures with axioms derived from the Reidemeister moves for oriented knots, were
introduced in [6] and have been used to define invariants of oriented knots and links in [5, 10] and more. In
particular, the number of biquandle colorings of an oriented knot or link diagram K by a finite biquandle X
defines a nonnegative integer-valued invariant known as the biquandle counting invariant, denoted ΦZ

X(K).
An enhancement of ΦZ

X is a generally stronger invariant from which ΦZ
X can be recovered; enhancements

have been studied in [2, 3, 8, 13] to name just a few.
In [12] the first and last listed authors introduced the notion of quantum enhancements of ΦZ

X defined
as quantum invariants of biquandle-colored knot or link diagrams, focusing on the unoriented case. In this
paper we introduce a new infinite family of quantum enhancements using biquandle brackets, i.e., skein rela-
tions which depend on biquandle colorings. This family of invariants includes biquandle counting invariants,
biquandle (and quandle) cocycle invariants, and classical quantum invariants such as the Jones and HOM-
FLYPT polynomials (see for example [11]) as special cases. In particular, we provide examples of strongly
heterogeneous quantum enhancements, i.e., solutions to the biquandle-colored Yang-Baxter equation which
are not solutions to the uncolored Yang-Baxter equation, settling a question from [12] and confirming that
there are quantum enhancements which are neither cocycle invariants nor classical skein invariants.

The biquandle bracket conditions we find are very similar to the biquandle 2-cocycle condition, and
indeed biquandle 2-cocycle invariants form a special case of biquandle brackets. Moreover, we identify an
equivalence relation on biquandle brackets yielding the same invariant which specializes to the cohomology
relation for biquandle cocycles, even for non-cocycle biquandle brackets. Connections between quantum
invariants and quandle cocycle invariants were also studied in [7].

The paper is organized as follows. In Section 2 we review the basics of biquandles and the biquandle
counting invariant. In Section 3 we define biquandle brackets and provide some examples, including as an
application a new skein invariant with values in the Galois field of eight elements F8. In Section 4 we consider
the special case of biquandle brackets when X is a quandle. We end in Section 5 with some open questions
for future research.
∗Email: Sam.Nelson@cmc.edu. Partially supported by Simons Foundation collaboration grant 316709
†Email: orrison@hmc.edu.
‡Email: vrivera@g.hmc.edu.
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2 Biquandles

A biquandle is a set X with two binary operations . , . : X ×X → X satisfying for all x, y, z ∈ X

(i) x . x = x . x,

(ii) the maps αy, βy : X → X and S : X × X → X × X defined by αy(x) = x . y, βy(x) = x . y and
S(x, y) = (y . x, x . y) are invertible, and

(iii) the exchange laws are satisfied:

(x . y) . (z . y) = (x . z) . (y . z)
(x . y) . (z . y) = (x . z) . (y . z)
(x . y) . (z . y) = (x . z) . (y . z).

If x . y = x for all x, y ∈ X, we say X is a quandle.

If X and Y are biquandles, then a biquandle homomorphism is a map f : X → Y such that for all x, y ∈ X,
we have

f(x . y) = f(x) . f(y) and f(x . y) = f(x) . f(y).

The biquandle axioms come from the Reidemeister moves where we interpret x . y as x crossing under y
and y . x as y crossing over x from left to right when the crossing has both strands oriented down as shown.

Then the biquandle axioms are the conditions required for every valid biquandle coloring of the semiarcs in
a knot diagram before a move to correspond to a unique valid biquandle coloring (i.e., coloring satisfying the
condition pictured above at every crossing) of the diagram after the move. All four oriented type I moves
require that x . x = x . x.

The direct type II moves, in which the strands are oriented in the same direction, require that y . x and x . y
are right-invertible.
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The reverse type II moves, in which the strands are oriented in opposite directions, require the map (x, y) 7→
(y . x, x . y) to be invertible.

Finally, the exchange laws result from the Reidemeister III move.

Example 1. Let X be any set and σ : X → X any bijection. Then X is a biquandle with operations

x . y = x . y = σ(x)

known as a constant action biquandle. If σ is the identity, then X is a trivial quandle.

Example 2. Let Λ̈ = Z[t±1, r±1]. Then any Λ̈-module A is a biquandle, known as an Alexander biquandle,
under the operations

x . y = tx+ (r−1 − t)y and x . y = r−1y.

In particular, any commutative ring A becomes an Alexander biquandle with a choice of invertible elements
t, r ∈ A.

We can express the biquandle operations on a set X = {x1, . . . , xn} with operation tables for . and .
expressed as an n × 2n block matrix such that the entries in row k columns j and n + j are the subscripts
of xk . xj and xk . xj respectively.

Example 3. The Alexander biquandle structure on Z5 = {1, 2, 3, 4, 5} (where 5 represents the class of 0 so
our block rows and columns are numbered 1 through 5) with t = 2 and r = 4 can be expressed as the block
matrix 

4 1 3 5 2 4 4 4 4 4
1 3 5 3 4 3 3 3 3 3
3 5 2 4 1 2 2 2 2 2
5 2 4 1 3 1 1 1 1 1
2 4 1 3 5 5 5 5 5 5

 .
Example 4. Let L be a tame oriented knot or link. The fundamental biquandle of L, denoted B(L), is
the set of equivalence classes of biquandle words in a set of generators corresponding with the semiarcs in
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a diagram of L under the equivalence relation generated by the crossing relations of L and the biquandle
axioms. For instance, the trefoil knot 31

has the fundamental biquandle presentation

B(31) = 〈x, y, z, u, v, w | x . y = u, y . x = w, y . z = v, z . y = u, z . x = w, x . z = v〉.

Then for instance in B(31) we have

(y . u) . (x . u) = (y . x) . (u . x) = w . (u . x).

Different diagrams of the same knot or link yield different presentations which differ by Tietze moves and
hence present the same biquandle.

Given a finite biquandle X and a tame knot or link diagram L, a biquandle coloring of L is an assignment
of elements of X to the semiarcs in L such that the crossing relations

are satisfied at every crossing. Such an assignment determines and is determined by a biquandle ho-
momorphism f : B(L) → X. In particular, the set of biquandle colorings of L can be identified with
the set Hom(B(L), X) of biquandle homomorphisms from the fundamental biquandle of L to X. If L
is tame, then B is finitely generated with 2n generators where n is the number of semiarcs in L; hence
|Hom(B(L), X)| ≤ |X|2n. We usually write |Hom(B(L), X)| = ΦZ

X(L) ∈ N; this cardinality is known as the
biquandle counting invariant [2].

Example 5. The trefoil knot 31 from example 4 has only one valid biquandle coloring by the Alexander
biquandle in example 3, the labeling with every semiarc labeled 5, as can be determined by row-reducing
over Z5 the coefficient matrix of the system of crossing equations or by brute-force checking all possible
colorings and counting those which satisfy the crossing relations.

3 Biquandle Brackets

We would like to define a skein invariant (see [11] for instance) for biquandle-labeled link diagrams. Let X
be a finite biquandle, and let us fix a commutative ring with identity R and denote the set of units of R as
R×. We would like to choose elements Ax,y, Bx,y, w ∈ R× and δ ∈ R such that the element of R determined
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by the skein relations

with δ the value of a simple closed curve and w the value of a positive kink is an invariant of X-labeled
Reidemeister moves.

The first Reidemeister move comes in four oriented versions; the two positively oriented moves require
that for all x ∈ X, we have Ax,xδ+Bx,x = w, while the negatively oriented moves require A−1x,xδ+B−1x,x = w−1.
In particular, we can think of writhe-reducing type I moves as factoring out powers of w and writhe-increasing
type I moves as factoring out powers of w−1.

The direct type II moves require the oriented smoothing coefficients at positive and negative crossings to be
multiplicative inverses, with the reverse II moves requiring the same of the unoriented smoothing coefficients;
both moves then require that δ = −Ax,yB−1x,y −A−1x,yBx,y.
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Comparing coefficients of the five crossingless diagrams

on both sides of the X-labeled Reidemeister III move, we have on the left side
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and on the right side

yielding the remaining conditions on Ax,y and Bx,y. We thus obtain

Definition 1. Let X be a finite biquandle and R be a commutative ring with identity. A biquandle bracket
on X with values in R, also called an X-bracket, is a pair of maps A,B : X ×X → R× and distinguished
elements δ ∈ R and w ∈ R× satisfying

(i) for all x ∈ X,
δAx,x +Bx,x = w and δA−1x,x +B−1x,x = w−1

(ii) for all x, y ∈ X,
δ = −Ax,yB−1x,y −A−1x,yBx,y

and

(iii) for all x, y, z ∈ X,

Ax,yAy,zAx . y,z . y = Ax,zAy . x,z . xAx . z,y . z
Ax,yBy,zBx . y,z . y = Bx,zBy . x,z . xAx . z,y . z
Bx,yAy,zBx . y,z . y = Bx,zAy . x,z . xBx . z,y . z
Ax,yAy,zBx . y,z . y = Ax,zBy . x,z . xAx . z,y . z +Ax,zAy . x,z . xBx . z,y . z

+δAx,zBy . x,z . xBx . z,y . z +Bx,zBy . x,z . xBx . z,y . z
Bx,yAy,zAx . y,z . y +Ax,yBy,zAx . y,z . y

+δBx,yBy,zAx . y,z . y +Bx,yBy,zBx . y,z . y = Bx,zAy . x,z . xAx . z,y . z

where A(x, y) and B(x, y) are denoted Ax,y and Bx,y.

Given a finite biquandle X = {x1, . . . , xn}, an X-bracket can be represented by a pair of n× n matrices
A,B with Aj,k = A(xj , xk) and Bj,k = B(xj , xk). We will usually write these as a single n×2n block matrix
for convenience. Note that we can recover δ and w from such a matrix, with

δ = −A1,1B
−1
1,1 −A

−1
1,1B1,1 and w = A1,1δ +B1,1.
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Example 6. Let X = {1} be the biquandle with one element. Then the matrix[
A A−1

]
where A ∈ Z[A±1] is an invertible variable defines a biquandle bracket with

δ = −A(A−1)−1 − (A−1)A−1 = −A2 −A−2 and w = A(−A2 −A−2) +A−1 = −A3.

Indeed, this is the Kauffman bracket (see for example [11, 14]).

Example 7. Let X be a finite biquandle, R be a commutative ring, and C : X → R× be a map where we
write Cx for C(x). Then the maps A,B : X ×X → R× defined by

A(x, y) = B(x, y) = CxC
−1
y C−1x . yCy . x

for all x, y ∈ X define a biquandle bracket with δ = −2 and w = −1. To see this, we note that if Ax,y = Bx,y,
we necessarily have δ = −2, and biquandle bracket axiom (iii)’s five equations all reduce to the first equation,
namely

Ax,yAy,zAx . y,z . y = Ax,zAy . x,z . xAx . z,y . z.

Then

Ax,yAy,zAx . y,z . y = (CxC
−1
y C−1x . yCy . x)(CyC

−1
z C−1y . zCz . y)(Cx . yC

−1
z . yC

−1
(x . y) . (z . y)C(z . y) . (x . y))

= CxCy . xC
−1
z C−1y . zC

−1
(x . y) . (z . y)C(z . y) . (x . y)

while

Ax,zAy . x,z . xAx . z,y . z = (CxC
−1
z C−1x . zCz . x)(Cy . xC

−1
z . xC

−1
(y . x) . (z . x)C(z . x) . (y . x))Cx . z)

× (C−1y . zC
−1
(x . z) . (y . z)C(y . z) . (x . z))

= CxC
−1
z Cy . xC(z . x) . (y . x)C

−1
y . zC

−1
(x . z) . (y . z)

which are equal by the exchange laws.

We now introduce the first of our new invariants.

Definition 2. Let L be an oriented knot or link diagram with n crossings with generators x1, . . . , x2n for
the fundamental biquandle B(L) associated to the semiarcs. There are 2n states corresponding to choices
of oriented or unoriented smoothing for each crossing, each of which has an associated product of n factors
of A±1x,y or B±1x,y times δk where k is the number of components of the state. The sum of these contributions
times the writhe correction factor, wn−p, is the fundamental biquandle bracket value for L.

Example 8. The Hopf link L2a1 below has four smoothed states with coefficients as listed.
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Then the Hopf link has fundamental biquandle bracket value

φ = w−2(Ax,yAy,xδ
2 +Bx,yAy,xδ +Ax,yBy,xδ +Bx,yBy,xδ

2)

where x, y are generators of the fundamental biquandle B(L2a1) = 〈x, y | x . y = x . y, y . x = y . x〉.

The fundamental biquandle bracket treats every knot or link as colored by elements of its fundamental
biquandle. This fundamental biquandle bracket may be a complete invariant of virtual links since it includes
the fundamental biquandle, already conjectured to be a complete invariant for virtual links up to a type
of reflection [9], and our later examples demonstrate that the fundamental biquandle bracket can detect
mirror images. However, comparing fundamental biquandle bracket values for different knots and link is not
straightforward since any two such links are being colored by generally different biquandles.

To get a more immediately useful invariant, let X be a finite biquandle. For any X-bracket β over R,
evaluating the fundamental biquandle bracket value of an X-coloring f of an oriented link diagram L yields
an element of R which is unchanged by X-colored Reidemeister moves on L; let us denote this value by β(f).

Definition 3. Let X be a finite biquandle, L an oriented link and β a biquandle bracket. Then the biquandle
bracket multiset invariant of L is the multiset of β-values over the set of X-labelings of L,

Φβ,MX (L) = {β(f) | f ∈ Hom(B(L), X)}

and the biquandle bracket polynomial invariant of L is

ΦβX(L) =
∑

f∈Hom(B(L),X)

uβ(f).

Remark 1. Skein invariants of uncolored diagrams are often computed by expanding crossings one at a time
rather than using the “state-sum” method of collecting all smoothings simultaneously [11]; for this method,
we note that the smoothing coefficients can be written on dotted edges connecting the smoothed curves as
depicted.

The value of a totally smoothed diagram is then the product of the elements on the dashed edges with
δk where k is the number of solid components. These values are then summed over the set of all totally
smoothed diagrams and multiplied by the writhe correction factor wn−p to yield the contribution β(f) of

the coloring f ∈ Hom(B(L), X) to the invariant ΦβX(L).
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Proposition 1. Let X be a finite biquandle and let β and β′ be X-brackets over R defined by maps A,B :
X ×X → R× and A′, B′ : X ×X → R× respectively. If there is an invertible scalar α ∈ R× such that for
all x, y ∈ X we have

Ax,y = αA′x,y and Bx,y = αB′x,y

then the link invariants defined by β and β′ are equal.

Proof. First, we note that

δ′ = −A′x,yB′−1x,y −A′−1x,yB
′
x,y = −(αAx,y)(αBx,y)−1 − (αA−1x,y)αBx,y = −Ax,yB−1x,y −A−1x,yBx,y = δ

and
w′ = A′x,xδ +B′x,x = αAx,xδ + αBx,x = αw.

Then for any link diagram L with j positive crossings and k negative crossings, the state sum with β′ equals
that with β multiplied by αj−k at every crossing. Then the contribution β′(f) equals β(f) multiplied by
αk−k, then multiplied by αk−j in the writhe-correction factor (w′)k−j ; hence, the powers of α cancel and we
have β(f) = β′(f), whence Φβx(L) = Φβ

′

x (L) for all classical and virtual knots and links L.

Example 9. The simplest non-trivial biquandle is the constant action biquandle on X = {1, 2} with
operation matrix [

2 2 2 2
1 1 1 1

]
.

The counting invariant ΦZ
X(L) with respect to this biquandle is 0 if L is a virtual link with any component

containing an odd number of crossing points and is 2c where c is the number of components of L otherwise.
Our python computations reveal biquandle bracket structures on X with coefficients in Z5 including[

1 3 4 2
4 1 1 4

]
.

The Hopf link has four X-labelings and fundamental biquandle bracket value

φ = Ax,yAy,xδ
2 +Bx,yAy,xδ +Ax,yBy,xδ +Bx,yBy,xδ

2.

Then we have δ = 2, w = 1 and

x y φ
1 1 1(1)(22) + 1(4)(2) + 4(1)(2) + 4(4)(22) = 4 + 3 + 3 + 4 = 4
1 2 3(4)(22) + 2(4)(2) + 3(1)(2) + 2(1)(22) = 3 + 1 + 1 + 3 = 3
2 1 4(3)(22) + 1(3)(2) + 4(2)(2) + 1(2)(22) = 3 + 1 + 1 + 3 = 3
2 2 1(1)(22) + 1(4)(2) + 4(1)(2) + 4(4)(22) = 4 + 3 + 3 + 4 = 4

Then the Hopf link has biquandle bracket invariant

ΦBX(L) = 2u3 + 2u4

while the unlink of two components U2 has invariant value

ΦBX(U2) = 4u4.

Example 10. Let X be any finite biquandle and R be any commutative ring with identity. For any invertible
element t ∈ R, the maps A(x, y) = t, B(x, y) = t−1 define a biquandle bracket βt called a constant biquandle

bracket. For any link L, the biquandle bracket invariant with respect to βt is ΦβX(L) = ΦZ
X(L)uKL(t) where

KL(t) is the Kauffman bracket polynomial of L evaluated at t.
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Example 11. More generally, an X-bracket in which for all x, y ∈ X we have A(x, y) = A and B(x, y) = B

where A+A−1 = B+B−1 defines a biquandle bracket βA,B satisfying Φ
βA,B

X (L) = ΦZ
X(L)uKL(−A2B−1,A+A−1)

where K(a, z) is the Kauffman 2-variable polynomial. Similarly, a biquandle bracket βA,B with A(x, y) = A

and B(x, y) = B with −A−1B − AB−1 = 1 yields Φ
βa,z

X (L) = ΦZ
X(L)uHL(A−1,A−1B−AB−1) where H(a, z) is

the HOMFLY-PT polynomial [11].

Example 12. Let X be a finite biquandle, G an abelian group, and ψ ∈ H2(X;G) an element of the second
cohomology of X with G coefficients, i.e., a function ψ : X ×X → G satisfying for all x, y, z ∈ X

ψ(x, y)ψ(y, z)ψ(x . y, z . y) = ψ(x, z)ψ(y . x, z . x)ψ(x . z, y . z)

and ψ(x, x) = 1 (see [4] for instance). Then setting A(x, y) = B(x, y) = ψ(x, y) defines a biquandle bracket
with R = Z[G]. Indeed, every biquandle bracket with A(x, y) = B(x, y) for all x, y ∈ X arises in this
way, since the biquandle bracket conditions with Ax,y = Bxy

reduce to δ = −2, w = −1 and the 2-cocycle
condition

Ax,yAy,zAx . y,z . y = Ax,zAy . x,z . xAx . z,y . z.

The biquandle bracket invariant in this case satisfies

ΦβX(L) = ΦψX(L)KL(1)

where KL(1) is the Kauffman bracket polynomial of L evaluated at A = 1.

Proposition 2. Let X be a finite biquandle, R be a commutative ring and C : X → R× be a map as in
example 7, and let C : X ×X → R× be the biquandle bracket defined by setting both A and B equal to

C(x, y) = C(x)C(y)−1C(x . y)−1C(y . x).

Then for any biquandle bracket β defined by A,B : X ×X → R×, the maps

A′(x, y) = A(x, y)C(x, y) and B′(x, y) = B(x, y)C(x, y)

define a biquandle bracket Cβ with δ = −Ax,yB−1x,y −A−1x,yBx,y and we have ΦβX = ΦCβX .

Proof. In Cβ, the invertible quantity

C(x)C(y . x)C(z)−1C(y . z)−1C((x . y) . (z . y))−1C((z . y) . (x . y))

factors out of each term on both sides of the equations in biquandle bracket axiom (iii), so Cβ is a biquandle
bracket provided β is.

To see that β and Cβ define the same invariant, note that we can picture Cβ as including factors of
C(x), C(y . x), C(y)−1, C(x . y)−1 and on the initial and terminal ends of the semiarc respectively along
with the Ax,y and Bx,y coefficients as shown.
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Then we observe that over any complete link diagram, the C factors match up in canceling pairs along each
semiarc, so the value of each state of an X-colored link in ΦCβX is the same as in ΦβX .

For biquandle brackets β representing biquandle 2-cocycles, C is a coboundary and β and Cβ are coho-
mologous; however, Proposition 2 holds even for biquandle brackets β not representing cocycles. Thus, it is
tempting to define β and Cβ to be “cohomologous” regardless of whether β is a cocycle; however, we will
settle for the following:

Definition 4. Two X-brackets β and β′ over R are C-equivalent if there is a map C : X → R× such that
for all x, y ∈ X, we have

A′(x, y) = A(x, y)C(x)C(y)−1C(x . y)−1C(y . x) and
B′(x, y) = B(x, y)C(x)C(y)−1C(x . y)−1C(y . x).

Corollary 3. C-equivalent X-brackets define the same invariant ΦβX .

In [12], quantum enhancements of the counting invariant with respect to involutory biquandles X were
defined as functors from the category of X-labeled unoriented tangles to an R-module category. Biquan-
dle brackets provide examples of quantum enhancements as defined in [12] in the following way: Given a
biquandle bracket β, define

I =

[
1 0
0 1

]
, N =

[
0 A11 −B11 0

]
and U =


0

−B−111

A−111

0

 .
Then the biquandle bracket skein relation yields X-labeled R-matrices X±1x,y:

Xx,y = Ax,y(I ⊗ I) +Bx,y(UN)

=


Ax,y 0 0 0

0 0 Bx,y 0
0 Bx,y Ax,y −A−1x,yB2

x,y 0
0 0 0 Ax,y

 .
See [14] for more.

Example 13. The biquandle bracket in example 9 corresponds to quantum weight over Z5 given by

I =

[
1 0
0 1

]
, U =

[
0 1 1 0

]
, N =


0
1
1
0

 ,

X1,1 =


1 0 0 0
0 0 4 0
0 4 0 0
0 0 0 1

 , X1,2 =


3 0 0 0
0 0 2 0
0 2 1 0
0 0 0 3

 ,
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X2,1 =


4 0 0 0
0 0 1 0
0 1 0 0
0 0 0 4

 , and X2,2 =


1 0 0 0
0 0 4 0
0 4 0 0
0 0 0 1

 .
In particular, this quantum enhancement is an example of a strongly heterogeneous quantum weight as
defined in the questions in [12], since X1,2 is not a classical R-matrix.

Example 14. Let X be the biquandle defined by the operation matrix[
2 2 2 2
1 1 1 1

]
and let R = F8 = Z2[t]/(1+ t+ t3) be the Galois field of eight elements. That is, R is the ring of polynomials
in one variable with Z2 coefficients with the rule that t3 = 1 + t. Then our python computations reveal that[

1 1 + t t t+ t2

1 + t2 1 1 t

]
defines a biquandle bracket. We can describe this one without explicitly referencing biquandles in the
following way: Given any oriented link L of c components, find the the 2c ways to color the semiarcs of L
alternately solid and dotted going around each component. Then for each such coloring, expand using the
following skein relations.

Finally, multiply by the writhe normalization factor tp(1 + t2)n where p and n are the numbers of positive
and negative crossings respectively.
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We computed this invariant for all prime classical knots with up to eight crossings, all prime classical
links with up to seven crossings, and all prime virtual knots with up to four classical crossings as found in
the tables at the knot atlas [1]. The results are collected in the tables below. We list the multiset version of
the invariant for ease of reading. We start with the prime classical knots:

ΦβX(K) K
{2× 1} 52, 75, 810, 811, 813, 817
{2× t} 31, 62, 89

{2× 1 + t} 41, 71, 74, 85, 814
{2× t2} 61, 63, 72, 73, 87, 821

{2× 1 + t2} 77, 82, 83, 84, 88, 819, 820
{2× t+ t2} 81, 86, 812, 816, 818

{2× 1 + t+ t2} Unknot, 51, 76, 815

For prime classical links with up to seven crossings, we have

ΦβX(L) L
{2× 1, 2× t} L6a2

{2× t, 2× 1 + t2} L7a6
{2× 1, 2× t+ t2} L6a1

{2× 1, 2× 1 + t+ t2} L7a5
{2× t2, 2× 1 + t+ t2} L7a2, L7n1
{2× 1 + t2, 2× t+ t2} L2a1
{2× 1 + t2, 2× 1 + t} L4a1

{2× t+ t2, 2× 1 + t+ t2} L6a3
{4× 0} L7n2
{4× t2} L5a1

{4× t+ t2} L7a1, L7a3, L7a4
{2× 1, 6× t+ t2} L6a4, L6n1
{2× t2, 6× 1 + t2} L6a5
{2× t, 6× t+ t2} L7a7

and for prime virtual knots with up to four classical crossings we have

ΦβX(K) K
{2× 0} 2.1, 3.5, 4.2, 4.6, 4.8, 4.12, 4.17, 4.28, 4.32, 4.51, 4.58, 4.71, 4.75, 4.89, 4.105
{2× 1} 4.23, 4.41, 4.65, 4.79
{2× t} 3.6, 4.15, 4.16, 4.20, 4.22, 4.34, 4.40, 4.52, 4.60, 4.64, 4.82, 4.87, 4.92, 4.94

{2× 1 + t} 4.9, 4.10, 4.29, 4.31, 4.37, 4.48, 4.50, 4.57, 4.61, 4.69, 4.70, 4.78, 4.86, 4.90, 4.99, 4.108
{2× t2} 3.3, 4.4, 4.5, 4.11, 4.18, 4.25, 4.30, 4.33, 4.38, 4.39, 4.43, , 4, 44, 4.45, 4.49, 4.54, 4.62,

4.63, 4.74, 4.80, 4.83, 4.84, 4.88, 4.91, 4.95, 4.100, 4.101, 4.104
{2× 1 + t2} 4.1, 4.3, 4.7, 4.21, 4.24, 4.36, 4.53, 4.68, 4.73
{2× t+ t2} 3.2, 3.4, 4.27, 4.81

{2× 1 + t+ t2} 3.1, 3.7, 4.13, 4.19, 4.26, 4.35, 4.42, 4.46, 4.47, 4.55, 4.56, 4.59, 4.66, 4.67, 4.72, 4.76,
4.77, 4.85, 4.93, 4.96, 4.97, 4.98, 4.102, 4.103, 4.106, 4.107

We note that:

• ΦβX distinguishes the right- and left-hand trefoils, with invariant values of {2×t} and {2×0} respectively
and hence can distinguish mirror images,

• ΦβX distinguishes the Square knot from the Granny knot with invariant values of {2×t+t2} and {2×0}
respectively, so ΦβX is not determined by the knot group, and
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• ΦβX(10132) = {2 × t + t2} 6= {2 × 1 + t + t2} = ΦβX(51) and hence ΦβX is not determined by the
HOMFLY-PT, Jones, or Alexander polynomials.

4 Quandle Brackets

Let X be a quandle, that is, a biquandle with x . y = x for all x, y ∈ X. An X-bracket in this case is called
a quandle bracket.

Proposition 4. If X is a quandle and R is a commutative ring, then maps A,B : X ×X → R× defining a
quandle bracket must satisfy the mixed cocycle conditions

Ax,yAx . y,z = Ax,zAx . z,y . z (i)
Ax,yBx . y,z = Bx,zAx . z,y . z (ii)
Bx,yAx . y,z = Ax,zBx . z,y . z (iii)
Bx,yBx . y,z = Bx,zBx . z,y . z (iv).

Proof. Suppose our biquandle X is a quandle, i.e., x . y = x for all x, y ∈ X. Then the first three biquandle
bracket conditions from the Reidemeister III move reduce to

Ax,yAy,zAx . y,z = Ax,zAy,zAx . z,y . z
Ax,yBy,zBx . y,z = Bx,zBy,zAx . z,y . z
Bx,yAy,zBx . y,z = Bx,zAy,zBx . z,y . z

⇒
Ax,yAx . y,z = Ax,zAx . z,y . z
Ax,yBx . y,z = Bx,zAx . z,y . z
Bx,yBx . y,z = Bx,zBx . z,y . z

yielding (i),(ii) and (iv). Then the remaining biquandle bracket equations say

Ay,z(Ax,yBx . y,z −Ax,zBx . z,y . z) = By,z(Ax,zAx . z,y . z + δAx,zBx . z,y . z +Bx,zBx . z,y . z)

Ay,z(Bx,yAx . y,z −Bx,zAx . z,y . z) = −By,z(Ax,yAx . y,z + δBx,yAx . y,z +Bx,yBx . y,z)

which then implies

Ay,z(Bx,yAx . y,z −Ax,zBx . z,y . z) = δBy,z(Ax,zBx . z,y . z −Ax,yBx . y,z)

so we have
(Bx,yAx . y,z −Ax,zBx . z,y . z)(Ax,y + δBy,z) = 0.

Then
Ay,z + δBy,z = Ay,z + (−AyzB−1y,z −A−1y,zBy,z)By,z = −A−1y,zB2

y,z

is a unit in R, so Bx,yAx . y,z −Ax,zBx . z,y . z = 0 as required.

We note that the converse to proposition 4 is not true – the mixed cocycle conditions are necessary
but not sufficient conditions for maps A : X × X → R to define a quandle bracket, as the next example
demonstrates.

Example 15. Consider the trivial quandle on two elements, T2 = {1, 2} with x . y = x . y = x. The maps
A,B : X ×X → Z3 defined by [

1 1 1 1
1 2 1 2

]
satisfy all four mixed cocycle conditions and also the conditions that

δ = −Ax,yB−1x,y −A−1x,yBx,y = −2 = 1

and
w = 2 = Ax,xδ +Bx,x

for all x, y ∈ X; however, this is not a biquandle bracket since A1,2A2,2B12 = 2 but

A1,2B2,2A1,2 +A1,2A2,2B1,2 − 2A1,2B2,2B12 +B1,2B2,2B1,2 = 4 = 1 6= 2

so the fourth equation in biquandle bracket axiom (iii) is not satisfied.
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5 Questions

We end with some questions for future research. This is second paper in an ongoing series on quantum
enhancements; future papers are underway extending the present results to knotted surface and virtual
knots in various ways.

What exactly is the relationship between biquandle and brackets biquandle cohomology? Is there a
generalized theory of biquandle cohomology which includes those biquandle brackets which are not biquandle
cocycles in the traditional sense? Are there quantum enhancements which do not arise from biquandle
brackets? What Khovanov homology-style categorifications of biquandle bracket invariants are possible?
What about biquandle-colored skein modules?
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